

The University of Texas at Austin Center for Electromechanics

MANAGING POWER SYSTEM FAULTS

Xianyong Feng, PhD Center for Electromechanics The University of Texas at Austin November 14, 2017

Outline

- 1. Overview
- 2. Methodology
- 3. Case Studies
- 4. Conclusion

Power System Fault Management

Detection	 Real-time monitoring Detect electrical abnormal Fault type identification (permanent or temporary)
Location	Quickly and accurately locate faultMinimize system impact
Isolation	 Open protective device Minimize load interruption
Restoration	Quick recoveryRestore interrupted loads to normal

Power System Protection Research

- DC distribution system protection
 - 1. Ultra-fast dc fault protection [1], [2]
 - 2. Power converter fault current handling [3]
 - 3. Meshed dc network short-circuit fault current analysis [4]

Protection study for AC system with high penetration DERs

- 1. Intelligent sensor development
- 2. Fault type identification
- 3. Fault location
- 4. Islanding detection
- 5. Optimal sensor placement

- 3. L. Qi, J. Pan, X. Huang, and X. Feng, "Solid state fault current limiting for dc distribution protection," *Proc. of Electric Ship Technology Symposium*, Aug. 2017, pp. 187-191.
- 4. X. Feng, et.al., "Estimation of short circuit currents in mesh DC networks," *Proc. IEEE PES General Meeting*, July 2014.

^{1.} X. Feng, et.al., "Fault inductance based protection for DC distribution systems," *Proc. IET 13th Conference on Development of Power System Protection*, March 2016.

^{2.} X. Feng, et.al., "A novel fault location method for DC distribution protection," *IEEE Trans. Industrial Applications*, vol. 53, no. 3, pp. 1834-1840, May-June, 2017.

CEM Approach - Protection Control

Simulation Test:

New protection strategies are initially implemented in modeling software and verified in numerical environment

Tools:

- 1. Matlab / Simulink
- 2. PSCAD
- 3. ETAP
- 4. OpenDSS
- · The protection algorithms are implemented numerically
- The performance is evaluated and optimized offline

Control Hardware-in-the-Loop (CHIL) Simulation Test:

· Protection strategies are implemented in hardware controllers

The controller is validated in the HIL simulation environment

PXIe Real-Time/FPGA HIL

Procedure:

- 1. Model the circuit
- Implement control strategy in hardware
- 3. Configure the interface
- 4. Perform HIL tests

High spee

- Internet

Power Hardware-in-the-Loop (PHIL) Simulation Test:

Implement the interface between HIL simulator and real power systems

Features:

- 1. Network model in simulator
- 2. Power converters and active sources serve as power interface
- 3. NI FPGA simulator enables the fast PE switching

Real Hardware Test and Field Demonstration:

The protection strategy test in real microgrid.

Benefits:

- 1. Obtain validated engineering data
- 2. Demonstrate system performance in the real operation environment

1

Simulated Distribution Network in Onal-R

SCADA SV

Tertiary Controls

DC Distribution System Protection

DC protection challenges

- 1. No fault current zero-crossing
- 2. Lower line impedance
- 3. High di/dt
- 4. Power electrics device can not tolerate high fault current
- 5. Fast capacitor discharge

DC distribution system example

DC fault current

Fast DC Fault Location Algorithm

DC UPS

Inductance-based dc fault location*

- Estimate fault inductance with local 1 measured v(t) and i(t)
- Use estimated L to locate fault 2.

No communication required

*X. Feng, et.al., "A novel fault location method for dc distribution protection." IEEE Trans. Industrial Applications, vol. 53, no. 3, May-June, 2017.

Protection Control Prototype

Protection Algorithm Test

Control-HIL test

- 1. Opal-RT simulator
 - Simulated a 380 V dc system
 - Convert v(t)/i(t) to analog
 - Read in breaker status
- 2. Embedded controller
 - Read in v(t)/i(t) signals
 - Execute prot. algorithm
 - Send a trip signal for internal fault

Protection Algorithm Test

Hardware test

- 1. Low voltage circuit
 - 7.07 mF capacitor is charged to 12 V
 - Inductors are used to emulate lines
 - Short-circuit fault is created by closing a breaker
- 2. Embedded controller
 - Read in *v*(*t*), *i*(*t*), *di/dt*
 - Execute prot. algorithm
 - Send a trip signal for internal fault

Protection Algorithm Test Results

Control-HIL test results

- 1. *L* estimation error < 8.4%
- 2. Fault detection/location time < 0.7 ms

Protection Algorithm Improvement

Boundary Inductor

No boundary inductor

Result Summary

- 1. The prot. method uses local measurements only to locate fault
 - Detection and location time < 0.7 ms
 - L estimation error in HIL test < 8.4%
 - L estimation error in hardware test < 20%
- 2. The prot. Method accurately locates short-circuit faults if:
 - Voltage measurement error < 0.5%
 - Current measurement error < 1%
- 3. Boundary inductors improve prot. selectivity
- Ongoing work:
 - 1. Protection algorithm test on real MV dc microgrid

MVDC Shipboard System Protection

System Description

- 1. Two PGMs
 - FCL in dc-dc converters
- 2. One propulsion load
 - VFD + motor
- 3. One pulse load
 - High *di/dt*
- 4. DC circuit breakers
 - Isolate fault
- 5. Protection strategy*
 - FCL + diff. protection

*S. Strank, et. al., "Experimental test bed to de-risk the navy advanced development model," *Proc. of Electric Ship Technology Symposium*, Arlington, VA, Aug. 2017, pp. 352-358.

MVDC Shipboard System Protection

- Main results
 - 1. Fault: 10-25 ms, 20 m Ω , on dc bus
 - 2. Prot. strategy: FCL + diff. prot.
- Ongoing work
 - 1. Validate the protection method on real dc microgrid

15

AC Distribution System Protection

- Supported by DOE
- Fault type identification
 - Permanent or temporary
- Fault location
- Islanding detection
- Optimal sensor placement

AC Distribution System Protection

- Impedance fault location
 - 1. Requirement
 - Network model
 - Fault waveforms
 - 2. Benefit
 - Locate fault segment
 - Do not need synch.
- Traveling wave method
 - 1. Requirement
 - GPS synchronization
 - High bandwidth sensor
 - Fast processing speed
 - 2. Benefit
 - Incipient fault location (subcycle fault)
 - Simple algorithm

Conclusion

- 1. Fault management is critical for power system safety and reliability
- 2. Our dc prot. approach reduces fault clearing time and system recovery time
- 3. The fast prot. method significantly improves power system resilience

Thanks for your attention

Question?

Contact information:

Xianyong Feng, PhD Center for Electromechanics The University of Texas at Austin Email: x.feng@cem.utexas.edu Phone: 1-512-232-1623