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Power System Fault Management 

Detection 

•  Real-time monitoring 
•  Detect electrical abnormal 
•  Fault type identification (permanent or temporary) 

Location 

•  Quickly and accurately locate fault 
•  Minimize system impact 

Isolation 

•  Open protective device 
•  Minimize load interruption 

Restoration 

•  Quick recovery 
•  Restore interrupted loads to normal 
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Power System Protection Research 
• DC distribution system protection 

1.  Ultra-fast dc fault protection [1], [2] 
2.  Power converter fault current handling [3] 
3.  Meshed dc network short-circuit fault current analysis [4] 

• Protection study for AC system with high penetration DERs 
1.  Intelligent sensor development 
2.  Fault type identification 
3.  Fault location 
4.  Islanding detection 
5.  Optimal sensor placement 

1.  X. Feng, et.al., "Fault inductance based protection for DC distribution systems,“ Proc. IET 13th Conference on 
Development of Power System Protection, March 2016. 

2.  X. Feng, et.al., “A novel fault location method for DC distribution protection,” IEEE Trans. Industrial Applications, vol. 53, 
no. 3, pp. 1834-1840, May-June, 2017. 

3.  L. Qi, J. Pan, X. Huang, and X. Feng, “Solid state fault current limiting for dc distribution protection,” Proc. of Electric Ship 
Technology Symposium, Aug. 2017, pp. 187-191. 

4.  X. Feng, et.al., “Estimation of short circuit currents in mesh DC networks,” Proc. IEEE PES General Meeting, July 2014. 

4 



CEM Approach - Protection Control 
Simulation Test: 
 
•  New protection strategies are initially implemented in modeling 

software and verified in numerical environment 
 
Tools: 
 
1.  Matlab / Simulink 
2.  PSCAD 
3.  ETAP 
4.  OpenDSS 
 
•  The protection algorithms are implemented numerically 
•  The performance is evaluated and optimized offline 

Control Hardware-in-the-Loop (CHIL) Simulation Test: 

•  Protection strategies are implemented in hardware controllers 
•  The controller is validated in the HIL simulation environment 

Numerical simulation environment

Simulated 
circuit

Simulated 
control block 1

Simulated 
control block N
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Measured 
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Opal-RT Simulator
High speed 

communication link

Simulated Distribution Network in Opal-RTSimulated switching devices in NI PXI simulator

Control and Protection Hardware
NI controllers IED
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Control Center SCADA System
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Advanced protection 
strategies
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Procedure: 
 
1.  Model the circuit  
2.  Implement 

control strategy 
in hardware 

3.  Configure the 
interface 

4.  Perform HIL 
tests 

 
 
 
 

Power Hardware-in-the-Loop (PHIL) Simulation Test: 
 
•  Implement the interface between HIL simulator and real power 

systems 
 

Real Hardware Test and Field Demonstration: 
 
The protection strategy test in real microgrid.   

Benefits:  
1.  Obtain validated engineering data 
2.  Demonstrate system performance in the real operation environment  

I/Os
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HIL simulator ...
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Simulated network

~
Controlled 

voltage 
source Current 
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Hardware 
InterfaceReal Hardware 

Microgrid System
Power 

Amplifier
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Features: 
1.  Network model in simulator 
2.  Power converters and 

active sources serve as 
power interface 

3.  NI FPGA simulator enables 
the fast PE switching 

 
 
 
 

MW-scale Microgrid 
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DC Distribution System Protection 

AC fault current 

DC fault current 
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Fault 3
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L L...

...

DC distribution system example 

DC protection challenges 
1.  No fault current zero-crossing 
2.  Lower line impedance 
3.  High di/dt 
4.  Power electrics device can not 

tolerate high fault current 
5.  Fast capacitor discharge 
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Fast DC Fault Location Algorithm 

Inductance-based dc fault location* 
1.  Estimate fault inductance with local 

measured v(t) and i(t) 
2.  Use estimated L to locate fault  
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*X. Feng, et.al., “A novel fault location method for dc distribution protection,” 
IEEE Trans. Industrial Applications, vol. 53, no. 3, May-June, 2017. 
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Protection Control Prototype 
Protection strategy design 

1.  Online moving-window least square method 
2.  Algorithm on embedded controller 
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24 V 
47uF 

Simulated DC network 

Analog outputs: current/
voltage signal 

Fault detection and 
location algorithm 

A/D converters 

Breaker 
Trip 

command 

Microcontroller 

Ethernet Opal-RT simulator 

User interface 

Breaker status wired back to 
Opal-RT simulator 

Protection Algorithm Test 

Control-HIL test 
1.  Opal-RT simulator 
‒ Simulated a 380 V dc system 
‒ Convert v(t)/i(t) to analog 
‒ Read in breaker status 

2.  Embedded controller 
‒ Read in v(t)/i(t) signals 
‒ Execute prot. algorithm 
‒ Send a trip signal for internal 

fault 
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Protection Algorithm Test 

Hardware test 
1.  Low voltage circuit 
‒ 7.07 mF capacitor is charged to 

12 V 
‒  Inductors are used to emulate 

lines 
‒ Short-circuit fault is created by 

closing a breaker 
2.  Embedded controller 
‒ Read in v(t), i(t), di/dt 
‒ Execute prot. algorithm 
‒ Send a trip signal for internal 

fault 
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fault detection & 
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Diagram 

Test Circuit 
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Protection Algorithm Test Results 
Control-HIL test results 
1. L estimation error < 8.4% 
2.  Fault detection/location time < 0.7 ms 

tripping signal

current signal

current signal

voltage signal
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Protection Algorithm Improvement 
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Result Summary 
1.  The prot. method uses local measurements only to 

locate fault 
‒  Detection and location time < 0.7 ms 
‒  L estimation error in HIL test < 8.4% 
‒  L estimation error in hardware test < 20% 

2.  The prot. Method accurately locates short-circuit faults if: 
‒  Voltage measurement error < 0.5% 
‒  Current measurement error < 1% 

3.  Boundary inductors improve prot. selectivity  

•  Ongoing work: 
1.  Protection algorithm test on real MV dc microgrid 
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MVDC Shipboard System Protection 
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PFN
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System Description 
1.  Two PGMs 
‒  FCL in dc-dc converters  

2.  One propulsion load 
‒  VFD + motor 

3.  One pulse load 
‒  High di/dt 

4.  DC circuit breakers 
‒  Isolate fault 

5.  Protection strategy* 
‒  FCL + diff. protection 
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Proc. of Electric Ship Technology Symposium, Arlington, VA, Aug. 2017, pp. 352-358.  



MVDC Shipboard System Protection 
•  Main results 

1.  Fault: 10-25 ms, 20 mΩ, on dc bus 
2.  Prot. strategy: FCL + diff. prot. 

•  Ongoing work 
1.  Validate the protection method on 

real dc microgrid  
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AC Distribution System Protection 
•  Supported by DOE 
•  Fault type identification 
o  Permanent or temporary 

•  Fault location 
•  Islanding detection 
•  Optimal sensor placement 
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Proposed intelligent sensors 

Permanent fault 

Transient fault 

intelligent sensor
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AC Distribution System Protection 

•  Impedance fault location 
1. Requirement  
‒ Network model  
‒ Fault waveforms 

2.  Benefit 
‒ Locate fault segment 
‒ Do not need synch. 

•  Traveling wave method 
1. Requirement 
‒ GPS synchronization 
‒ High bandwidth sensor 
‒ Fast processing speed 

2.  Benefit 
‒  Incipient fault location (sub-

cycle fault) 
‒ Simple algorithm 
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Conclusion 
1.  Fault management is critical for power system safety 

and reliability 

2.  Our dc prot. approach reduces fault clearing time and 
system recovery time 

3.  The fast prot. method significantly improves power 
system resilience  
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Thanks for your attention 

Contact information: 
Xianyong Feng, PhD 
Center for Electromechanics 
The University of Texas at Austin 
Email: x.feng@cem.utexas.edu 
Phone: 1-512-232-1623 
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